Asparagine Endopeptidase (AEP) Inhibitors for Treating Neurodegenerative Diseases

From the Laboratories of Keqiang Ye, Ph.D., Dept. of Pathology
Haian Fu, Ph.D., Dept. of Pharmacology
Yuhong Du, Ph.D., Dept. of Pharmacology

Cliff Michaels, Assistant Director, Licensing
OTT Breakfast Club, May 3rd, 2017
Alzheimer’s Disease

- Degeneration of cortex and cingulate
- 30M cases worldwide & 1.9M deaths annually
- 60-70% of all dementia
- One of most costly diseases (US = $100B/year)
- Increasing as population ages

Current Treatments

- Lifestyle changes, Behavioral interventions, Therapeutics
- Opportunity = therapeutics that slow/halt disease

<table>
<thead>
<tr>
<th>Drug</th>
<th>MOA</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namenda®</td>
<td>NMDA antagonist</td>
<td>• Mild cognitive improvements</td>
</tr>
<tr>
<td>Cognex®</td>
<td>ACHE Inhibitor</td>
<td>• No improvement in cell death</td>
</tr>
<tr>
<td>Exelon®</td>
<td>ACHE Inhibitor</td>
<td>• No reduction in disease progression</td>
</tr>
<tr>
<td>Razadyne®</td>
<td>ACHE Inhibitor</td>
<td></td>
</tr>
<tr>
<td>Aricept®</td>
<td>ACHE Inhibitor</td>
<td></td>
</tr>
</tbody>
</table>
AEP – the missing link?

Alzheimer's Disease

β Amyloid

• APP miscut to Aβ
• Forms extracellular amyloid plaques
• Plaques disrupt tissue

AEP

• Over phosphorylation
• Forms intracellular neurofibrillary tangles
• NFTs lead to cellular death

Tau Protein

Asparaginyl endopeptidase (AEP) – cysteine protease

• Expression upregulated with age
• Capable of miscutting APP when overexpressed
• Overexpression leads to hyperphosphorylation of Tau
Drug Discovery

Screen for AEP inhibition in kidney lines

Validate hits against pure AEP

Analyze structural similarity for hits

ID top hits by IC$_{50}$ for each family

Specificity & cytotoxicity assays

Top candidate/lead

Compound #11
- IC$_{50}$ - 800nM
- Strong specificity to AEP

54,000 compounds

760 initial hits

46 hits

8 families

8 “best” compounds
#11 Improves Physiology & Behavior

5XFAD Mice = widely used genetic AD model – display phenotypes like αβ plaques and cognitive impairment

Aβ Plaque Formation

- Compound #11 reduces plaques
- Compound #11 improves memory

Morris Water Maze Test

- Compound #11 improves memory
Value proposition

• AD is a condition with a large number of potential patients and large unmet need
• Compounds target mechanism involved in both main disease pathways
• Early but promising proof of concept data
• AEP also known to play role in PD

Next Steps – Additional drug design & POC data

IP Status – Applications filed in the US, EP, & China

Commercialization – Actively seeking entrepreneur & funding
Thank you!
US Cases (Millions)

- Alzheimer's: 5.4
- Parkinson's: 1.5
- Multiple Sclerosis: 0.4
- ALS: 0.03
- Huntington's: 0.03

Legend:
- Alzheimer's
- Parkinson's
- Multiple Sclerosis
- Huntington's
- ALS
<table>
<thead>
<tr>
<th>Drug</th>
<th>MOA</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Namenda®</td>
<td>NMDA antagonist</td>
<td>• Mild cognitive improvements</td>
</tr>
<tr>
<td>Cognex®</td>
<td>ACHE Inhibitor</td>
<td>• No improvement in cell death</td>
</tr>
<tr>
<td>Exelon®</td>
<td>ACHE Inhibitor</td>
<td>• No reduction in disease progression</td>
</tr>
<tr>
<td>Razadyne®</td>
<td>ACHE Inhibitor</td>
<td></td>
</tr>
<tr>
<td>Aricept®</td>
<td>ACHE Inhibitor</td>
<td></td>
</tr>
</tbody>
</table>